
AD-A127 707 A VARIATIONAL APPROACH TO SURFACE SOLITARY WAVES(U) 1/,
WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER
R E TURNER JAN R3 MRC-TSR-2473 DAAG2S-RD-C-041

UNCLASSIFIED F/U 12/1 N

EEEEEEEEEEEEEE
EEEEEEEEEEEEEE
EEEEEEEEEEEEEEENDIIIIIIIIIII

ommmmsom



Jill1 L __ Q 2

_____ Ill 1.
mmi

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS- 963-A



(V i
NRC Technical Summary Report #2473

0A VARIATIONAL APPROACH TO
SURFACE SOLITARY WAVES

R. E. L. Turner

14I

Mathematics Research Center
University of Wisconsin-Madison

610 Walnut Street
Madison, Wisconsin 53706

January 1983

(Received July 8, 1982) D T IC -

S 19ECT0

Approved fo r public release E
, \ C..Distribution unlimited

Sponsored by

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, DC 20550
Research Triangle Park
North Carolina 27709

83 05 06-144

.... ., -



Ar
1TIS GR~a

UNIVERSITY OF WISCONSIN-NADISON " ~~DYIC TAB
MATHEMATICS RESEARCH CENTER U'<?nnoUnced.1~ifcatIon-_

A VARIATIONAL APPROACH TO SURFACE SOLITARY WAVE By

R. E. L. Turner __ivTri-t" -
... . ..... Y Codes

Technical Sumary Report #2473 2P cial
January 1983

ABSTRACT LA c
Two-dimensional flow of an incompressible, inviscid fluid in a region

with a horizontal bottom of infinite extent and a free upper surface is

considered. The fluid is acted on by gravity and has a non-diffusive,

heterogeneous density which may be discontinuous. It is shown that the

governing equations allow both periodic and single-crested progressing waves

of permanent form, the analogues, respectively, of the classical cnoidal and

solitary waves. These waves are shown to be critical points of flow related

functionals and are proved to exist by means of a variational principle.
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SIGNIFICANCE AND EXPLANATION

The research in experimental and theoretical hydrodynamics in the last

few decades has indicated that solitary waves play a special role in the

evolution of general disturbances in fluids. Still, the investigation of

solitary waves and, in particular, the use of variational principles

associated with these waves is far from complete. While variational

principles for surface waves in fluids of constant density have been discussed

in the literature, the existence proofs given here appear to be the first

rigorous use of critical point theory to obtain surface waves. Moreover, we

treat a class of density profiles not heretofore included in an exact theory.

In this report we treat a two-dimensional flow of an incompressible,

inviscid fluid in a region with a horizontal bottom of infinite extent and a

free upper surface. The fluid is acted on by gravity and has a non-diffusive,

variable density which may be discontinuous. It is shown by means of a

variational principle that the governing equations allow both periodic and

single-crested progressing waves of permanent form, the analogues,

respectively, of the classical cnoidal and solitary waves. The solitary waves

are obtained from periodic ones as the periods grow unboundedly. All of the

waves obtained have elevated streamlines and have speeds greater than the

critical speed associated with the ambient density. Further, the amplitudes

are shown to be exponentially decreasing away from the crest.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A VARIATIONAL APPROACH TO SURFACP SOLITARY WAVES

R. 2. L. Turner

INTRODUCTION

This paper is concerned with two-dimensional flow of an incompressible, inviscid fluid

in a region with a horizontal bottom of infinite extent and a free upper surface. The

fluid is acted on by gravity and has a non-diffusive variable density which may be

discontinuous. It is shown that the governing equations allow both periodic and single-

crested progressing waves of permanent form, the analogues, respectively, of the classical

cnoidal and solitary waves. Moreover, solitary waves are shown to arise from periodic ones

as the period grows unboundedly. A survey of earlier work on steady waves in stratified

fluids and references to the literature are given in 01] and [2]. The work on surface

waves in fluids of constant density has a much longer history, going back to the middle of

the nineteenth century; see [2], (3], [41 for references and accounts of the development of

the subject.

The problem treated here is close to that examined by Ter-Krikorov [5] who treats a

smoothly varying density, decreasing with height, and allows a free or fixed upper

surface. He shows that from each vertical mode of a linearized flow problem there is

bifurcation to a wave of arbitrarily prescribed horizontal period, including that of

"infinite period", i.e., a solitary wave. The methods used are close to the perturbation

technique of Friedrichs and Hyers (6] who gave an alternate proof to that of Lavrentiev [7]

for the existence of small amplitude surface solitary waves. The techniques used here are

variational in nature. They are an outgrowth of the work of Bona, Bose, and Turner (2] on

smoothly stratified flows in regions with fixed upper and lower boundaries and are

particularly close to the methods used by the author in (1), wherein we considered two

fixed boundaries, but allowed a discontinuous density. The present paper is based on the

observation that the free surface can be treated as an additional discontinuity at which

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the National
Science Foundation under Grant No. MCS-7904426.
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the density drops to zero. The estimates and proofs required here are similar to those in

(1], differing mainly in the behavior near the free surface. To shorten the length of the

presentation we will frequently make reference to proofs in (1), pointing out how the free

surface is accomodated.

Variational principles satisfied by free surface flows of constant density have been

described by a number of authors (cf. e.g. (81-1131 and their lists of references). In

(9), [101 and [133 a case is made for the use of dynamically invariant quantities in a

variational characterization of a flow as a step toward a treatment of stability in the

spirit of Liapunov. Similar ideas have been carried through for the Zorteveg do Vries and

other model equations (of [14], (15], [161). It appears difficult to base a rigorous proof

of the existence of steady wave solutions of the Euler equations on the dynamic principle

given in (13]. Here we obtain waves using a different principle and, to our knowledge,

ours is the first rigorous use of a variational procedure to obtain periodic and solitary

surface waves. Garabedian gives a critical point principle for periodic surface waves, but

it appears that his appeal to Morse theory needs further justification. It can be shown

that the functional he uses is not uniformly positive definite at the origin, as claimed.

The principle used here is Lagrangian in character and reduces to a constrained variational

problem. The separate functionals used are not constants of time dependent motions and so

the method does not immediately suggest a means for establishing stability. However, we

feel that a further understanding of the variational structure of the problem will be

useful. It should be noted that in a related problem, that of vortex flow, principles

allied to dynamics have been successfully used to establish the existence of steady flows

(cf. [17] and references given there).

Here a steady wave will correspond to a critical point of a "displacement" functional

on a manifold of prescribed "kinetic energy" R. For the classical solitary wave what

corresponds here to R almost certainly takes values in a finite range 0 < R 4 R < -

(the continua found in (41 have this property). Thus it is to be expected that with

variable density the range of R will be finite. This limitation is reflected in a lack

of coercivity in the analytical problem derived here. Our method of treatment involves
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introducing artificial coercivity and combining this with estimates on the size of the

solution of the altered problem. The outcome for the original problem is a restriction

0 < R ( R on allowable energies with the size of i buried among elliptic estimates.

While it is difficult to compare the size of the solutions obtained here with those of Ter-

Krikorov, they must both be considered to have mall amplitude. However, the variational

approach, with improved estimates, could provide finite amplitude waves. Apart from

treating less regular densities than considered in [5] we can show that in the presence of

a free surface there are always waves of elevation with amplitudes decreasing away from the

crest. On the other hand, Ter-Krikorov's techniques give an explicit asymptotic form for

the wave near a bifurcation from a parallel flow, though not uniformly in the horizontal

variable, and are applicable to bifurcation from higher vertical modes, not covered by the

treatment here. It should be noted that in the came of constant density it has been shown

that families of onoidal and solitary waves exist which include mall amplitude waves and

the Stokes wave with a sharp crest having a 1200 opening (cf. [4), (181, (19).

The organization of the present paper is as follows. In section 1 the physical

situation is described and the relevant mathematical equations set down. The analytical

problems are posed and the main results are described in theorem 1.2. The remainder of the

paper is devoted to establishing these results. In section 2 a variational formulation is

given and an "extended" problem with artificial coercivity is solved. In section 3

estimates for the solution of the extended problem are given. Section 4 contains estimates

which establish that solutions of the extended problem, when restricted to have small

energy, solve the original flow problem in the periodic case. Section 5 deals with

exponential decay of wave amplitudes away from the crest and the existence of solitary

waves as the limit of periodic ones when the periods increase indefinitely.
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1. STADY rLOWS WIT
H A rEE SUACE

Here we briefly describe the passage from a physical model of wave motion to a

boundary value problem for a partial differential equation. For a more complete discussion

we refer to [1 and [2). Consider a heterogeneous, incompressible fluid acted upon by

gravity and restrict attention to flows which are two-dimensional. That is, assume all

quantities depend only on a horizontal coordinate, a vertical coordinate, in the direction

of gravity, and on time. The fluid is further assumed to be inviscid and non-diffusive,

the latter property to be elaborated in the following paragraphs. While our interest is in

wave patterns which progress horizontally at a fixed velocity c, we can remove the time

dependence by considering Cartesian coordinates referred to a moving crest of a wave. it

is then possible to seek a steady flow in a region which is independent of time. The

region will have to be determined as part of the solution of the problem. However, we do

assume the flow is over an infinite horizontal bottom. Let x be a coordinate in the

horizontal boundary and y, a vertical coordinate chosen so that the bottom boundary is

at y - -1 and so that the acceleration due to gravity is represented by (0,-g) with

g > 0. The fluid is assumed to have a free surface

y - h(x) > -1 (1.1)

which is to be determined. To begin with we require h to be continuous and satisfy

lim h(x) - 0 (1.2)

The fluid is then assumed to occupy the region

rh = ((x.y)l-l < y 4 h(x),-- 4 x < -( (1.3)

For (xy) e Fh  let

% (UV) {1.4)

where U(x,y) and V(x,y), respectively, are the horizontal and vertical components of

fluid velocity in a moving frame. A flow is sought which is steady in the moving frame so

the Buler equations take the form

#ca" -Vp - gp in Ph (1.5)

where p - p(x,y) is the density, p is the pressure, and t2 (0,1). The condition of

-4-
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incompressibility becomes

div - 0 (1.6)

and the condition of nondiffusivity entails

• VP- 0 (1.7)

throughout Fh . Supplmenting equations (1.5), (1.6), and (1.7) we have the following

boundary conditions. The fluid should not penetrate the horizontal bottms i.e.,

V(x,-l) - 0, xm x ( . (1.8)

On the free surface s - ((x,y)ly - h(x),-- < x < } there are two conditiones a

kinematic condition requiring the velocity to be tangential and a second requiring the

pressure to be zero: i.e.

-h U + V - 0 on S (1.9)x

and

p - 0 on S * (1.10)

Here h. denotes a derivative. Finally, conditions must be specified at x - *-. We can

specify a velocity distribution at infinity and here take the simplest case of a wave

propagating in fluid which, in "laboratory" coordinates, Is at rest at infinity. For

coordinates based in a wave moving to the left with velocity c the condition becomes

lim (OV) - (c,O) (1.11)

Further, the density in the "undisturbed region" in specified and we take it to depend only

on y. Thus

lim P(x,y) - p(y) (1.12)

where 9(y) is a decreasing function of y for -1 < y < 0, normalized to satisfy

P(O) - 1.

The problem that will occupy us is to find c, h, %, p and p satisfying (1.1),

(1.2), (1.5)-(1.12). The regularity required of the functions will be made more precise in

what follows. For now we continue the discussion at a formal level. In particular, we
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assume to begin with that p is continuously differentiable although we ultimately want to

allow discontinuous densities.

The conditions (1.6) and (1.7) imply that there is a peoudo-stream-function

- *(x,y) such that

at -1/2 U1 " 1/2 (1.13)

and that p is a function of *, p(#). From Bernoulli's theorem the total head is

constant along streamlines, hence on level sets of #. Thus
1 22

p+ p( 2 + V ) + O - H() (1.14)

Eliminating p, using the two components of the vector equations (1.5), one finds that

satisfies the equation

A*(x,y) + gy d4' d-- (1.15)

(cf. Dubreil-Jacotin 120], Long (21] and Yih (221). If the density p is specified as a

function of * and if the dynamics are specified by giving H(*), then (1.15) is a

semilinear elliptic equation for +(x,y). Any solution of (1.15) gives rise to a solution

of (1.5) with U, V and p obtained from (1.13) and (1.14). For now we leave aside the

question of boundary conditions on the top and bottom of Fh and examine the implications

of (1.11) and (1.12).

In the search for a solitary wave, a disturbance which should be of essentially finite

extent, it is natural to ask that for large x, #(x,y) should approach a pseudo-stream-

function corresponding to a flow with velocity (c,0) in a stream of density o(y). Thus,

letting

;(y) - c 7 01
/

2
(-)ds 1.16)

0

we require

,(x,y) - ;(y) + 0 as lxi " - , (1.17)

The density P (we use the same symbol) associated with the stream coordinate 4,

compatible with that already specified at x t o*, is

P(W) - o(Y(*)) (1.18)

where (4) is the function inverse to ;(y). The expression (1.18) is taken as the

-6-
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definition of P(W) Similarly, the total head associated with the stream coordinate

is taken to be

NM - (;(*) + p(*)c + 0(*)gy(4s)

where p is hydrostatics

p 0 -q fy (s)ds *(1.20
0

With PM~ and H(*) given we can now seek a solution 4i(x~y) of (1.15). Note that for

any constant c, ;(y) (of. 1.16) is a soltuion of (14). We call it a trivial solution.

The flows examined here will have free surfaces and discontinuities in velocity

occurring along certain streamlines. In order to deal with a problem in a fixed domain and

to confine irregular behavior to coordinate lines we replace (1.15) by an equation for y

in semi-Lagrangian independent coordinates x and *. The interest here is in flows

ay
reasonable. Corresponding to (1.15) is the equation

(Z)~. + x) +9 =d#

(cf. [11, 151), obtainable using the relations

*x + S.yx - o *y* (1.22)

Naturally, y - ;(#), the inverse of 11(y), is a solution of (1.21) and we refer to it as

trivial. Corresponding to (1-*17) is a condition

Y(x.*) ;M(~ + 0 as lxi +. (1.23)

which is imposed uniformly in 41~I 0 where

a (1 f - 1 "2 (a)ds. (1.24)
0

The condition

-1xt1 (1.2S)

replaces 0t.S), and from (1.22) it is clear that (1.9) will be satisfied merely by choosing



h(x) - y(x,0) ( (1.26)

Since 2( 2 
2

y 2 the pressure condition at the fluid surface becomes

p(xO) - constant (1.27)

where

1 1 2

p(x, ) .1_ - j - - 0(*)gy(x.,) 2
Y*

using 1.14). Suppose that a continuously differentiable o(y) is given and that for any

fixed speed c, p(#) and H(*) are defined by (1.18) and (1.19). It is then possible to

interpret the foregoing equations and conditions in a classical sense. For a density P

with possible discontinuities a meaning must be given to equation (1.21) and we do that

next.

Let C
k
, on a domain consist of tunctins with continuous derivatives through order

k, each satisfying a H1lder condition with exponent B. For a more complete description

of spaces see [1], section 1. suppose P(y), given initially, satisfies

i) p is nonincreasing on E-1,0]

ii) p e CI 's for some 0 > 0 except for jumps (1.29)

at points nli : -1 < l
1 

< n
2 

< ... < nN < 0

where p is continuous from the right.

The corresponding function p(#) from (1.18) will have discontinuities at points

-;(nj), -1,2,...,N. Extending the domain of *, to 0 -1 and El+ 0 (so

that *0 = *(El) _ we let

Oi- 3 x (4I4I+1 )1  j (,1..... (1.30)

and D - R x (* 1,
0
). For 0 < a < 1 let

Ma - {yly e cO'l(D),yx e C (D),y e CI'a(D)

(1.31)

and y. > 0 in Di, j - 1,2,...,N)

Since (1.21) has a divergence form, the notion of a weak solution where p and H are

smooth is described in a standard way (cf. [1] (1.13)). A weak solution can also be
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defined with the presence of discontinuities in p and H and is equivalent to the

following definition which stresses a physical aspect of the flow.

Definition 1.1. We call y e M a solution of (1.21) if and only if

i) y is a weak solution of (1.21) in 0 for j - 1,2,...,N.

(ii) The pressure p(x,*) computed from (1.28) in each D, j - 0,1,2,...,N is the

restriction to D of a continuous function p defined on D.

The solitary wave problem can be posed as follows.

Problem P." Find a c > 0 and, for some a > 0, a nontrivial (1.32)

function y e m , satisfying (1.21), (1.23), (1.25) and (1.27).

In the course of solving the solitary wave problem P. we will solve the corresponding

problem for periodic waves.

aProblem Pk" Find a c > 0 and a nontrivial y e N , y a (1.33)

2k periodic function of x, satisfying (1.21), (1.25) and (1.27).

The interpretation of a solution of problem P. in terms of a solitary wave hinges on

the condition (1.23), requiring the flow to be "trivial" at x - t . hile the physical

interpretation of a solution of problem Pk' for finite k, is tenuous, we will

nevertheless find solutions which are 2k periodic in x and show that they are

exponentially decaying from crest to trough. Thus they might be viewed as a train of waves

with quiescent zones of approximately trivial flow between the crests. In any case, the

periodic formulation is a convenient analytical device.

To analyze the problems Pk for k 4 - and to expand the class of density profiles,

we associate with any density function p described by (1.29) a family of smooth densities

as follows. For a 60 which is positive but smaller than n - for J -

-. 9-



and for each 6, 0 ( 6 < 60, let p6(y) be a nonincreasing function of class C such

that

N

1 = p(y) for y 4 U (ni - 6,n1) (1.34)
i-I

and set p0(y) - p(y). The manner in which the jump at ni is approximated by a smooth

transition is immaterial to our estimates and so we need not specify p6 on the intervals

(Vj - 8,ni), j - 1,2,...,N. The estimates in the subsequent sections give a uniform

picture of the transition from smooth to discontinuous densities.

In order to summarize the main results of the paper in a convenient form it is

necessary to anticipate a transformation to be introduced in section 2 and give some

additional notation. A rescaled stream variable is given by

n(') - f ds(3)n(V f* d( .35)

0 cp 1/2y(s))

(cf. 2.14) so that at x - ± the streamline with label n has height n. The expression

w(xi) - y(x,;(n)) - n

(cf. 2.2) represents, for each x, the displacement from its position in a trivial flow,

of the streamline which has height n at x - t* (under the condition 1.23). The

equation satisfied by w, with x and n as independent coordinates, is given by (2.12)

(where x = x1  and n - x 2). Its formal linearization about w - 0 is
2
-2- p() -2 + -i P(n) n g AR

(1.36)

2 3:
z - 0 at n - -1 1 c T= gz at i - 0

(cf. 4.22), the last condition arising (as we shall see in proposition 2.1) from the

Bernoulli condition (1.27). The Sturm-Liouville problem obtained from (1.36) by letting

2z - 2(n) has a least eigenvalue A - g/c . The corresponding value of c, denoted c

to indicate its dependence on 5 through p = P0, is the largest speed (correspondingly,

the lowest spectral point) associated with (1.36). This speed is referred to in the

hydrodynamics literature as the "critical" speed or the speed with which infinitesimal long

waves travel. Its relevance here is that the waves we obtain have propagation speeds which

-10-
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are "supercritical", i.e., they are larger than c A full discussion of these ideas has

been given by Benjamin [23].

The main results of the paper are contained in the following theorem. Its proof, and

explicit estimates related to the waves obtained, are spread over the ensuing sections. In

particular we refer to propositions 2.1, 2.2, 4.4, 4.6, 4.8 and 5.2 together with remarks

2.3, 4.9 and 5.3. Note that a discontinuous density is allowed when the parameter a - 0,

while a solitary wave corresponds to the case k - *, by our convention.

Theorem 1.2. There are positive numbers R, x(R), and a such that for 0 4 6 < 80,

0 < R 4 R, and k(R) 9 k < - the problem Pk for Pa has a nontrivial solution y in

Ma corresponding to a speed c with the following properties

1) c > c(1 - CLR4/3)
- 1/2  

i.e. c is "supercritical"

2) y has period 2k in x (for k < ).

The streamline displacement w satisfies

3) 10 1k p VW 2 dxdn - R 
2

-1 -k 2

4) w(x,n) > 0 for -1 ( n • 0.

5) w(x,n) - w(-x,n) and for 0 4 x < x' 4 k

w(x,n) w(x',n).

6) IwI < C2 exp[-Ox] and IVwi 4 C3 exp[-Bx] on 0 < x 4 k for a 6 > 0.

The quantities R, , o, Ci, C2 and C3 depend on p in (1.29)t C 2 and C3 also

depend on R and 8.

-11-
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2. A VARIATION FORMULATION

In this section it is assumed that the density is smooth and given by (1.34) for

6 > 0, but the subscript is often omitted. The equation (1.21) is formally the uler

equation for the functional

2

I 1+ y 2
x _ 2 - H(*)yjdxd* (2.1)

D 2

where primes denote derivates. That is, the condition that 4 has a critical point (zero

derivative) at the function y is expressed by(1.21). This will be made precise at a

later stage. Note that the first term in the integrand in (2.1) is merely the Dirichlet

integral in the new coordinates. As noted in section 1, y - ( ) is a solution of

(1.21)1 thus it is formally a critical point of 0. If y(x,*) is another solution of

(1.21) then

w(x,n) - y(x,(n)) - n (2.2)

is formally a critical point of

[I - f [V + gp'(n) w2]dxdn (2.3)a 2 1

where

a - ((x,n)l-- < x < -I < n < 0) (2.4)

(cf. [1], 12). Here n is the stream coordinate introduced in (1.35) and w, the

vertical treamline displacement. We emphasize that for a nontrivial flow w * 0, in

general, i.e., only at x - I- does one require that the streamline with label n have

height n. Note that with the new scaling p(n) is the same function introduced at the

outset, describing the density as a function of height.

Just below the free upper surface of the flow the density has the positive value 1.

While the usual model for surface waves implicitly takes p - 0 in the atmosphere,

retaining only the Bernoulli pressure condition, it appears necessary for a workable

variational principle in the present context to explicitly incorporate a drop in density at

the upper surface. Starting with p (or p ) define

-12-



PO; 1 l (2.5)

0 1 - 0

The change in p at the one point n - 0 will not alter the first term in the integrand

in (2.3), but will alter the second term. Define

G(w) - ff [ cp(n) V w ,2 + .(n)wdxd (2.6)
+

Equivalently,

G(w) G()' , 2 x (2.7)

We turn nov to the periodic version of the wave problem. Let

a k " {(x,n) I lxI < k, -1 < n < 0) (2.8)

and

G fk + 2
nG(w) -, ( [) !L-f1 ] (2.9)

Iw + w

It will often be convenient to use the notation - x x P and fi Bpi

for i - 1,2 where

2 2
-1 1 p 2  (2.10)

f(PlP2) -2 1 + p 2

Still proceeding formally, one verifies that if v (assumed to vanish when x2 --1) is a

2
critical point of G, then with A - g/c

f P(x2 )f (Vw)*z =A f '(x )wz (2.11)

"k 
k

for allowable *variations" z. Here and in the sequel a repeated index is understood to be

summed over {1,2). The equation (2.11) is merely a weak form of

-13-



y P(x2 )f (VW) - Xp,(a 2 )w in

v 0 at X2 a -1 (2.12)

P(x 2 )f 2 (Vw) - Xw at x2 a 0

We interrupt the reformulations of the problem at thie point to show that a nonzero smooth

solution of (2.12) gives rise to a nontrivial solution of problem Pk"

proposition 2.1. suppose w C2() r C I(). If w, with n > -1. satisfies (2.12)

for some X > 0. then (cf. 2.2) y defined by

y(x,O) - n(*) + w(x,i(*)) (2.13)

where

n( 0) f 1/2(la )(2.14)

and

c - (2.15)

satisfies equation (1.21) and the conditions (1.25) and (1.27).

Proof. The correspondence between the elliptic equation (2.12) for w in 0 and the

equation (1.21) for y in D is shown exactly as in section 2 of (1. Also the assertion

that y takes the value -1 when - *-1 follows trivially. To see that the pressure

condition (1.27) is satisfied start with

f2 (V) - A

at x2 - 0 (note p(0) - 1) and express the relation in the coordinates x,n:

+ + 1 .w 2  1 2
vi2 ni 2 SL (2.16)

1 2 l 2

(1)+ Vn)2 c2

for n - 0. To compute the pressure from (1.29) the value of R for nim 0 is needed.

From (1.19)

-14-

I -w



HI P(O) + 1 2 +2 yO

12
2

From the relations (1.16) and (2.2), evaluated where nj 0 (or I'-0) and P(0) -1,

and

Hfence the expression (1.28) for the pressure bec 2

(0 2 1 ~ x 2
2(,O - ~~i - . 9

(10 + wv

0V

when (2.16) is used, completing the proof of the proposition.

To obtain nontrivial solutions of Problem Pk(Ic C -) for a density which is smooth on

-1 4 nt < 0 it will suffice to obtain nonzero periodic solutions of (2.12). The case of

discontinuities in density on -1 C nt < 0 and the resolution of problem P. for solitary

waves will be handled through limiting procedures.

The equation (2.11) can be expressed as

F'(w) - Xq'(v) (2.17)

where

P~w) - f P(x 2 )f(Yw)

2

and the prime* in 12.17) denote derivatives (still to be defined in a suitable space). A

tempting approach to solving equation (2.17) is to consider



mup 8(w)
F(w)-const.

and obtain I as a Lagrange multiplier associated vith an extremal w. However, a is

unbounded on level sets of F. To see this consider the case that p a I and lot

I+

/1x -+Inl1/2

on %. Clearly W(x,O) # L2 r however, a simple estimate shows F(v) < *. Nevertheless,

as shown in [M] for a similar problem without a free surface, the variational approach can

be salvaged by altering f in the integrand of F where 1v ; r, for some positive

r, and then showing that a solution obtained by a variational procedure and having a

suitably restricted "energy" satisfies JVwI ( r. The approach here is similar, but we

also take account of the free upper surface by an altered functional.

We now proceed to define a substitute for equation (2.17) as a stop to obtaining the

results in theorem 1.2. We refer the reader to section 2 of [1] for proofs of some of the

assertions to be made. We are still considering a family of densities OV 0 < 6 < 8,

(cf. (1.34)) which are smooth on -1 < n < 0 and which could reflect a rapid change in

density at certain levels in a fluid. A similar "smoothing" for p near n - 0 will be

useful, purely as an analytical device. Let T - T(n) be a nonincreasing C2  function on

(-.0) which is zero for x2 ( -1 and which satisfies T(0) * -1. For each

C, 0 < € < 60 let ¢( C) - T(O/) and define

;8,€(n) - PS(n) + T¢(n) (2.19)

so that -6(T) -lm ,t* As earlier, the manner in which p decreases from p,(-€)so tht P, +0

to 0 on [-c,0] is not important, though we do require that pi , p8. Now extend Pa

to 0 < n -C 1 as an even function and ;,, to 0 < n 4 1 as an odd function, retaining

the same symbols for the extended functions. The extended functions will be in class

C1 ,0 if pi(0) - 01 otherwise P6  is merely Lipechitz continuous at 0. We also

require the function s defined by

e(n) - sgn(n) (2.20)

-16-



where the signum of 0 is 0. Now, suppose C - '(t) is a smooth decreasing cutoff

function, equal to 1 for 0 4 t 4 I and equal to 0 for t ) 2. Replacing f(p,1p 2 )

in (2.18) will be

2 2 2 2

a(x2,p11 P2 ) - F'r 2(1 + (12)P2p+ P2x (I F P (1

&( P ,71+*X2)2) r) 2 2)(2.21)

2 22 22 2 2
where o ) o that 2 ,,+P2 )/2 when p2 + p2 )2r. .Lot

ai - 3a/ap, and a3 .
2
a/3p ;)pj. The function a is globally convex in (pjp2),

uniformly in x2, for r sufficiently mall, and satisfies the following inequalities

(proved exactly as in [1], emma 2.1).

1 2 2 1 2 2S01(Pl +pI 2) • a(p15 p2 ) C j o2 (p1 + p2 )

3 p2 +p2 a ,+ a 2 +p2
o3(p I + p2) C alp1  a2P2  Op(P + p )

(2.22)

2 + a 2 
1 (a

1 2 a 2 P2 )

1 2 ij i j

Here a for 1 • i 4 5 and v are positive constants independent of x2, 6, p1  and

P2°

Let

k {(xIx 2 ) I IxI IC k, Ix2 1 < 1) (2.23)

and set Q Let Ck  denote the C' functions on £ which are 2k periodic in

x, and have support not containing points where x2 - *1. The symbol C0 denotes the

elements of Ck  which are even with respect to x1  and x2 . Since the functions in Ck

and C vanish when x2 - -1, the Poincard inequality guarantees that the expression

Iwik - (. Vw 2 ) 1/ 2  (2.24)

k

provides a norm, and the completions of the respective spaces in the norm are denoted by

H ~k~ and H k Hk (£). The symbols 11k and Hwill also be used in later

-17-
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aections to denote the restrictions to 0 of functions in those spaces. Thus a function

in A (Q) is even in xi. For w e H CU) define the functionals

A(w) - ' E(x2 )ax2,VW) (2.25)

and
2

i(w) - (2.26)

where integration is over U here and in the remainder of this section. The notation

A', 5' will be used for the Frechet derivatives of the functionals in <(U).

Our subsequent program ts briefly described as follows. We show that for each R > 0

the equation (2.27) below has a solution (.,w) with w - w,,, positive in bk and

2
normalized by A(v) - 2R . Restricting attention to the lower region nk we show that for

£ converging to zero through a suitable subsequence we obtain a function w which is

smooth on 2k and satisfies (3.23), essentially the restrictlon of (2.27) to a for

C - 0. For R suitably restricted, IVwI < r and we can show that (A,w) satisfies the

original equation (2.12). All estimates obtained are uniform in 8 ) 0 and k ) 0.

Taking limits of solutions as these parameters vary we obtain the desired wave forms.

Until we consider limits involving the parameters k, 6, and C, we selectively suppress

them. It is assumed that k < until Remark 5.3. Through the penultimate paragraph of

section 4 it in assumed that 8 > 0, while for the remainder of this section, it is also

assumed that e > 0.

Proposition 2.2. For each R > 0 the problem

i'(w) - xi'(w) (2.27)

has a solution (X,w) satisfying x > 0, w e HC(&), A(w) 2R, and w 0 in 6. The

function w is characterized by

i(w) - sup 3Cv
+
) (2.28)

A(v)2R
2

where v+ - MAx(Ov).

Proof. The proof proceeds as that of Theorem 2.1 of Mli with H: replacing Rk . The

variational procedure leads to M() - 0 for all e e H'() and for a suitable A > 0,

-18-
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where N in defined by

N() f j (Plx 2 )aiXVw) -b + 1;(x )+ - (2.29)

The derivatives of a are easily seen to Satisfy &1 (x2 ,-p.P 2) -a 1 (x2 ,P1 .P 2 ) and

aI(-x2,P.pIO 2 ) - aI(x 2 PwPp2 ), while a2 has the opposite parity, i.e., even in P1

and odd in (x2 ,P2 ). Further p and a' are even in x2 . As a consequence one finds

that M annihilates all functions # which are odd in x, or in x 2  or in both. Then

m is zero on all test functions and the remainder of the proof follows an before.

Remark 2.3. According to (24], Theorem 6.3, the smoothness of w, restricted to the

original region 0L, is limited only by the smoothness of p. Thus with p e C
1 , V is

of class C
2
, in each subdomain of Li.

Lema 2.4. The multiplier X occurring in proposition 2.2 satisfies

C1 4 A 4 C2  (2.30)

where C1. C2  depend on the total variation of p(n).

Proof. Since P(0) - 1, it follows from (2.27) and (2.22) that

A = 5'_v)Lw _ L i (2.31)
<('(v),v> - w'w2

Since -J f w - 2 f ;w 2 4 0(-1) f w2 + (2 Cp(-1) f Vw,
2  

a lower bound depending

Sn a)

on p(-I) results.

In a similar fashion

__i __(),___ 200 () 404- 4 1 (R) (2.32)
<fl.(WW> 3(w)

follows from (2.22), (2.27), and the characterization of w. The last quotient in (2.32)

2
can only become larger if w Is replaced by any function x e having A(s) 2R 

.  t
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z -y(1 - yvI) > 0. From (2.22) it follows that Y 2 a k ( ) (9 'r22kP(-1) ft. if

y Is chosen to achieve i(s) - 2R 2 a simple computation using (2.32) shows 4 C C2 ,

with C2  depending upon p(-1).

-20-
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3. ESTIMS FOR THE hXTWk4DD PROBLEM

In this section some additional notation will be useful. When x2 < 0 the expression

for a in (2.21) reduces to a function of p1  and P2

2 2 2 2Pl 
+  

P 2 Pl 
+  
p 2(3 1

a(Pl"p2 ) = r 20- + 1 2 (3*1)

A functional similar to (2.25), but associated with 0k, is defined by the expression

AM() - J p5Cx2 )a(Y) • (3.2)

Let C - C(x1) be a cutoff function, i.e. an element of C (R) with range in

[0,13. Let

- {(x1,x2 ) e " 1} (3.3)

and

0' " ((x#X 2 ) e 61r > 0} . (3.4)

We make a standing assumption that JC'j q 2, thus restricting the nested domains

D" C i' somewhat, but avoiding a dependence on C' in the estimates we'll make, which

will be the typical interior type, relative to the variable x1 . The constants occurring

in the estimates will be denoted by C, possibly with a subscript or superscript, or in

the case of a RSlder exponent, by the letter a. These numbers will depend upon the

maximum density P(-1), upon the positions of the discontinuities in p in (1.29), and

upon the size of p' where it is continuous, but will be independent of c,8, and the

period 2k. The estimates also depend on a(x2 ,p1 ,P 2 ) and its derivatives with respect

to p, and p2, but in an inessential way (cf. [1), section 3). By lema 2.4 we can also

absorb the dependence on X into the constants referred to. Having indicated that the

parameters C and a depend on the given density p we will usually not display the

dependence. In general we still suppress the parameters t, 5 and k. Throughout this

section 6 > 0 and k < "i at the end we display the C dependence and let C approach

zero. The imediate aim is to obtain estimates of w and its derivatives in terms of

-21-
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Integrals of IqvI 2 over subregions of *k' It follows from (2.22) that

f tVw,2 4 c A(.) (3.5)
a k

and thus the various norms of w can be estimated in terms of the size of R2 - Alw).

Leama 3.1. There is an a ) 0 such that the solution w in proposition 2.2 satisfies

Irt 2  ; C f IVl2 (3.6)
C a(2 ,0) at

Proof. This is immediate from the known results on elliptic equations ([25], Theorem

8.29), for w satisfies
-aiJ "J;  w (,(Ol2 ~2 3.7)

ai - -fpw W

1

with a j - f ai,(x2 ,tVw)dt.
0

Remark. The symbol a occurring in subsequent results and in Theorem 1.2 should be

understood to be the smaller of the exponents occurring in lemas 3.1 and 3.2.

Lemma 3.2. Let w be the function occurring in Theorem 2.2 and let v - wx. Then there

is an a > 0 such that

IVv c1 f v,2  (3.8)
L2(0")

and

Iv12 a C 2 f v 2 . (3.9)
C l0") no.

Proof. This lemma combines lemmas 3.1 and 3.2 of (1), and the proofs are essentially the

same. First one shows

f iv, 2 < C' f IVvI 2  (3.10)
a" S'

for n" C a" C 0' using a cutoff function adapted to a" and n' and a test function

-22-
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*- C2v with (2.27) (equivalently (2.29) with w+ - w). Inequality (3.9) is then a
ax I

consequence of theorem 8.29 of [25) completing the proof.

In addition to a global estimate of Vv in L2  the following local estimate will be

used. For convenience we'll assume 0 < a 41/2 in Lema 3.2.

Lemma 3.3. Let v - w be as in the previous lemma and suppose A(w) R 
. 

Let

x - (x 1 , x 2 ) be a point in a and Ba C the ball of radius a < 1/4 centered at x

Then

v Ivv 2 )1/ 2 I C R-O' (3.11)

where

1 1 +1

R, f f [Ij2dxIdx2

x -

and a is the exponent fram lemma 3.2.

Proof. We use the ideas of (25], chapter 12. Let 3 be a radial coordinate with respect

to an origin at x and let * - *(o) 0 be a C function with support in B2a

(suppose B20 C ft otherwise extend w to be odd and p even about x2 - *i, obtaining

a weak solution of an equation on a larger region). Suppose that # B I on B and that

[V*j 4 2/0. Let h(x ) - -)(x 2) and note that Ihi has a bound depending on the

maximum density p(-I). If # is any test function, (2.27) yields

IPa N 2 Vw) - # - f (- (hw) - h
S2 3xi 322

With Y - v(;) and * - y 2 )] the last equation can, after integration by

parts, be written ae

-f(43 Pa i- [*CV-Y)] f1(9-L hw) - (*'(v-y)] - f I, (v 2 )
1 i 1xI a 2 x2 1x

where integration is over B unless indicated otherwise. Or,

-23-
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f D v [2lP (v2 -v

I hw [2*2* (V - 2av f hvx [2**l (v - y) +
1 2 ax2 2 1 a

Since p > 1, IhI < C11 a k > v, as a quadratic form; and )ak I < C",

f *21VvI2 ( c J 21Vv1*VIlIv -Y

+ C1 f 21VwI*'Ilv - + C' f *2(lw Avi + 1x--

1 x2 2a1

2 1 2
Using the inequality 2ab 4 Ca + - to absorb terms involving Vv into the left member

of the last inequality and to combine terms involving Vw we arrive at

f *2 19vl 4 C1 I fIV*12 (v - Y)2 + C2 f 2 VwI2  (3.12)

NoW let C - C(x 1 ) be a cutoff function which is equal to 1 on B2 0  and vanishes for

X , 1 - 1. Then

x1

x2( 1,x2) - f - ¢(s)wx (s,x2 )ds
2 2 -' 2 2

so

x1+2o x2+20 xI '

ff 22 f 2o f 2 (I (Cw + rw )dS)
2

B '2 - 2 x21,2a 2 x1.x-2a x2"x2-2a x1-I

;1+2a x2+20 ;1+1 2

1 2 2 22 2CC' [jIf / Cvx  +~ w2 )2ddx 2 ]dx I ( C"CR')2a (3.13)

x1.20 x220 x1 2

where use has been made of (3.8). Since, by (3.9), v - w has a C
a  

norm bounded by a

multiple of R', it follows from (3.12) that

S*2,Vvi, C(jC)2(R,)22a.o2 +C 2  ,)2(a + a2)

It is assumed that 0 < a (1/2 so (3.11) follows.

Recall the notation nl < ... < nN for the points of discontinuity of the density p

given in (1.29).

-24-
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Lema 3.4. Leot w be the solution occurring in proposition 2.2 and let r be the cutoff

parameter associated with a in (2.21). Then there is a constant C such that for

w x2(xIOX 2) 2rp(TI )/PCO) + CR' (3.14)

while for -1 4 ( -e (0

-w x2(x 1 # 12) 4 2rp(n N )/P(O) + CR' (3.15)

where

R' - f f jw(s,t)12 dadt (3.16)
-1 X-2

Proof. If -1 C x C nX/2 the result follows by using a comparison argument in the region

0, {Cs(9t) InI - x I I < , x 2 < t < 0)

The fact that ;1(t) C p'(t) allows the proof of lea 3.3 of (1] to be carried over with

constants depending on the width I el.

For 1/2 nN 4 x C 0, the inequality (3.14) is obtained from a comparison argument on a

region where the second variable is between IP and x2. Let d - I e - x 2 . To simplify

notation let Cx11 x2 ) be the origin of new coordinates (x' 1) and then omit the primes

to obtain a region

a {Xlx )I IxI C 1, -d < x ( 0)

We continue to use the expression p(x 2) for the density in the new coordinates and let

-q (q )- 0) be a lower bound for p x on a. Note that a in (2.21) is independent of

spatial coordinates in the region under consideration. Let Q be defined by

Qw . -. L- P(X )a (7w)

and observe that for the solution w, Qw X 4,w 4 0. if u is constructed so that

uC0,0) - w(0,0), u 4 w on 3al, end gu 0 in a, then according to theorem 9.2 of

(251, u Cu wIn f.It will then follow that wx (0,0) 4 u x2(0,0). For u take
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u(XIOX 2) w(0,0) + Wx (0,0)x I + AC1g + A3. (3.17)

where

g(xlpx 2 ) = Re([-(x 2 + ix1 )
l  )

(a from lemna 3.2) and

x 
2

2(x2  f (sd + 2p(-d)/p(s))ds
0

If lux 2 is larger than the cutoff r then (cf. (2.21))

QU. - P(x2 ) !t- . + A3 d-1ax 1 ax, P 2Agx2 3

since g is harmonic in 5. Then since Igx21 < (1 + c)(1 + d2

A3 ) qA ( + at)(d + d ) (3.18)

will insure that Qu ) 0 on 0. Since

ux2 ' Aagx2 + A 3(x 2
d- 1 

+ 2p(-d))/p(x2 ) 2 -A (1 + a)(1 + d ) + A3

having

A3 - A (1 + a)(1 + d
2
) > r (3.19)

suffices to give lu x2 > r. The term w(0.0) + wx (0,0)x1  is of order R' according to
2 1 +cx

lemms 3.1 and 3.2 and since g is negative and of order Ix1 1 when x2 = 0 it will

suffice, as in [1], lea 3.3, to choose A a C'R' to have u 4 w on that part of 50

where x2  0. As in the lem cited, u C w will also be satisfied where x1 il and

x2 C x2 C 0 for some x2 e f-d,0), with such a choice of A On the remainder of the

- 22
boundary of 0, i.e. where x2 < x2, e 1 1.ds C x2 < 0 Since the first three terms

0
on the right side of (3.17) are of order R', a choice of A3 ) C"R' will make u C 0 on

this remaining portion (recall w > 0, so u 4 w). The coefficient A 3 can be increased

if necessary to satisfy (3.18) and (3.19), and can ultimately be chosen to be of size

r + CR'. Since u (0,0) - 2A3 p(-d)P-1(0) (in the new coordinates) a bound for

w (0,0) follows, namely, the upper bound for w contained in (3.14). The bound fromx2  x2

-26-
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below follows in a like manner, using the fact that 0, -= for x -e, and hence
,x <

can be estimated independently of C.

Lemma 3.5. Define B by

f -I -r'd: C > 0
k a

O(Cv v) I(3.20)
f v(x1 ,0)w(x,O)dxl, C - 0
k

where T is the function occurring in (2.19) and rk - {(x ,0) I Ix I < k). Suppose

C j ' 0, w - w in Mk , and v,-& v in Hk  for J - 1,2,..., the convergence in Rk

being weak. Then

lim O(c *Wm#V O(Ow.v) (3.21)

Proof. An integration by parts produces the expression

B(C,v,w) - 0(0,v,w) - f T C*Vx2 v  x 2) (3.22)

1/2
There is a continuous linear map taking an element of Rk  to its trace in H (F k )

(1261, theorem 9.4). Since this last space embeds compactly into L2 (rk) the trace of

wj (or vj) converges strongly in L2 (r k). The weakly convergent elements wj and vj

lie in a bounded set in Hk' from which it follows that wJ v )V + vj w lies in a

bounded set in LP(Q k ) for any p ( 2. Since T converges to zero in Lr for any

r < -, it follows from I0lder's inequality that the integral term in (3.22), evaluated

with C - 9c, v . vj, and w - w, converges to zero as j + -.

Proposition 3.6. For each 6 > 0, k > 0 and R > 0 there is a X > 0 and

w 4 %(Q) n C2(a) n C
0

' () with w ) 0 and AN) R such that

A'(w) - XB'(W)

in the notation (2.18) and (3.2). That is

-27-
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I P~a1 (Vw) x x f 4w# (3.23)
ak k

for all e Hk (). The function w is an extremal for the problem

+ 2

supx 2 2C ; u2) (3.24)
A(U)-R "

ueHl(a)

moreover, with the restrictions that B C 0 and that A is replaced by 0 ina

definitions (3.3) and (3.4), the estimates (2.30), (3.6), (3.8), (3.9), and (3.11) hold

uniformly in 8 and k, as well as

Iw I ( 2rpln)/p(O) + CR' (3.25)

with R' defined as in (3.16).

Proof. Let w E 
E H:(h) denote a solution obtained from proposition 2.2 for 0 < c < 60

and let A . ((xiX 2 ) e I < -el. From (3.5) and lemma 3.1 we know that,

independently of S,k and C, the functions w lie in bounded sets in Hk (h) and

Ca(6). Likewise from lamas 3.2 and 3.4 the derivatives w lie in a bounded set in
x I

C a() and the derivatives w are bounded in L(A ). In addition, since p,, is in
x
2

C1,0(-1,0), it follows from quasilinear elliptic theory ([24], theorem 6.3, p. 283) that

for each n > 0, w e C2 (a ) with bounds depending on 6, but uniform in E as £

approaches 0.

Let C take the values 2
- J
, J - 1,2,..., and let w

J  
denote the corresponding

solution. By the Arzela-Ascoli theorem a subsequence w1 ,1 w1 ,2 ,... converges in C0 ()

and in C 2(a 
1/ 2

) to a function w. A further subsequence w2 ,1,w 2 ,2,... converges in

C2(a 
/ 4

) to w. Continuing, we find the usual diagonal sequence wj = wj,j converging

to w in C
2 
(a 

n 
) for each n > 0. Moreover, the estimates cited at the outset of the

proof give bounds on w e c0 () and on - e C*(Q) as well as the estimate
ax 
1

w x ( 2rP( NM)/p(O) + CR'

-28-

...... _ - - ,,- ,!< . w- q - ..- I-I II . . . . .



It follows that w • C2 (() and has an extension to ( which is in C 0 , 1 (0). Clearly,

then, w e H (0).

Next, it follows from (3.5) that 1w 12  4 CA(w ) - CR2  and so, for a further
ilHk

subsequence (also denoted wj), it can be assumed that wj converges to w

weakly in Hk (0) and strongly in L2 ("}). Since a(PlP 2 ) is a convex function, the

functional AMw) is also. Then the met of u for which A(u) C R2  is convex and, as

wJ converges weakly, A(w) < R . Let 0 6t with t - c be denoted by pi, let

2b, - ;;(w,)2 , and let 29 - f ;'w2  (here and in the remainder of the proof all

integrals are taken over nk unless otherwise indicated). It is then immediate from the

known convergence of w) and lemma 3.5 that bi + b as j * *.

Let the extreme value in (3.24) be denoted by b. First we show that b < b is

impossible. If b - b - d > 0 then from the characterization (3.24) there is a

u e He (0) satisfying A(u) - R2 and f ,(u*) 2/2 > b - d/3. Then from lemma 3.5, for
k

all sufficiently small positive c, f 0 ;(u )2 /2 > b- d/2. But then since w is an

extremal for the problem with c > 0, f ;,£(WC)2 /2 > b - d/2. This is incompatible with
having bj converge to b - b - d as j * -. We have shown that A(w) R

2 
and

S /w2 2 ) b. However, neither of these inequalities can be strict without contradicting

the characterization (3.24). In particular, if A(w) < R2 , one easily shows that

A(tw) - R2  for some t > I with a corresponding supremum larger than b in (3.24).
£

As regards the equation (3.23), since w is even in x2, we conclude from (2.27)

that for each c > 0

O P8(x2 )a(VV) A- e / , (3.26)

for all # e H k(0). It is easy to verify that for i - 1 or 2,

Iai(plP 2 )1 4 C(1P 1l + 'p2 1) (3.27)

(cf. [1] lemma 2.1) and thus for • C0'1 (0) the integral of p6ai* over -

will, by Halder's inequality, be 0(n /2) uniformly as e + 0. Thus with c - ti, the

left hand member of (3.26) converges to the left hand member of (3.23) as j * -. Since

-29-
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A satisfLe the inequalities (2.30) it can be assumed, without loss of generality, that

¢ converges to a value 4 satisfying (2.30). It then follows from lema 3.5 that the

right hand member of (3.26) converges to the corresponding term in (3.23). Thus (3.23)

holds for # e C0 1  
and the extension to # e 6 follows by continuity.

We next show that (3.8) holds for the w just obtained. Let v - (W )X and

V - v * From (3.8) it follows that for Y > n > 0
xI

L ¥ lYvj 1 2 C Cf vi
2 

+ C 1  ', n 1
V
O 1 2

and hence for each y > 0,

f IVvl2 - CI  Ifw2  (3.28)
a Orv as

provided

li 11-m f I Vw l 2 
. 0 (3.29)

r,+O J+- -k -n

If (3.29) does not hold, then from (2.22) and the observed convergence of A£ to A,

uniformly on bounded sets in Hk # it will follow that there is a sequence + 0,

m - 1,2,... such that
k 0
S 0 ) R2 > 0 (3.30)

J - -k -f

for all m. But then

c nm kc a +

I f pa(Vw) - lia f f pa(Vw ) R 2 - (R )2  (3.31)
-k -1 j+" -k -1

for all a. If m approaches infinity (3.31) yields A(M) < R2, which has been ruled

out. It follows that (3.28) holds for each y > 0 and hence with the integral taken over

all of Q*, completing the proof of (3.8). The other inequalities listed in the

proposition are done similarly.

Since w e C 2(f) the following result is immediate from (3.23) and the strong maximum

principle (cf. (3.7)).
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Corolla 3.7. The function v in the previous proposition sati.fies

a 6 d(x )a (VV) - P( w(.2
ax 1 2 £ - (x2 lv (3.322

in 0 and ia positive there.
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4.* A RTURN TO THE ORIGINAL PROBLE

Here we show that the solution (X,w) of A'(w) - AB'(w) given by proposition 3.6

is, for suitably restricted R, a solution of the "physical" problem (2.12). We also

obtain additional estimates which complete the assertions of theorem 2.2 (except

exponential decay) in the case 6 ) 0 and k < -.

In section 3 estimates were derived for w and v - w x The norms of w and v inxl

C
a 

and of Vv in L
2  

on a region A" C D were estimated in terms of R', the L
2

norm of Vw on a larger region 0' C 0 (cf. proposition 3.6). In addition in (3.11)

the L
2  

norm of Vv on a ball B C O was shown to be of order Raa and in (3.25) ana

L bound was given for w in terms of r and R'. Our next step is to obtain bounds

on w in terms of R' alone. We require a preliminary lemma. Recall that A in (3.2)

involves a from (2.21) with a cutoff parameter r.

Lemma 4.1. Let w be the function occurring in Proposition 3.6. There exist positive

constants rI and R0  such that if A is defined using a cutoff r 4 r1 and

2 2
A(w) - R < R0, then v - w satisfies

f IVv 12 c /" IWI 2  
(4.1)

S " 1 s o
where

S" = {(xX 2  b I b x -C b2, -1 • x2

(4.2)
N5' - (Xx 2 ) b1 - 1 4 x1 4 b2 + 1, -1 ( x2 C rN/4)

S' C

Proof. This lea is a counterpart to lemma 3.4 of M9 and the proof is similar. One

starts with a test function - C- 2 v in (3.22). Here, however, the cutoff function

is taken to be I on S" and to vanish outside of S' given by (4.2). Now that

depends on x2  as well as on xg
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3 2 2 a
x 2 1 2 2 21

In the earlier case just cited, the term with Cx2 was not present, but the new term is

easily incorporated into the estimates in terms of a constant involving the gap T Ni.

Lemma 4.2. Let w and RO be as in the previous lemma. Then there is a positive

constant r 4 r1  such that if A is defined using r = r, and 0- C 0' C Ok'

we I ( C' (4.3)x2 L (Ge )

where

R'- ( IVW,2)1 / 2  (4.4)

Moreover, if f is a closed region not containing any points of discontinuity of p in

(1.29) then

Iw I 4 C'R' (4.5)x2 C l (,)

for all sufficiently small 8 where a in the exponent from lemma 3.2.

Proof. The estimate (4.3) for x 2 < nN/2 is shown as in lemma 3.5 of (1] with one small

change. In the present context the function w need not vanish on each line xI -12

constant. However, since Ili L • C'R', w is of order R' at some point (xZX2) for
L x2

each x,, by the mean value theorem, and this suffices for the argument. hn argument

given in the luma cited also shows that the oscillation of w over a distance dx2

satisfies

oscw x) 4 CR'da  (4.6)

in the region where x2 < nN/2, where C doe. depend on a bound for lp x in the region

(and hence is independent of 6, for small 8, In a region 5 containing no

discontinuity of P). In the present context lemma 4.1 is used.

Now consider the region

ao - ((xl ,x2 )In1/x2C x < 0)
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and recall that 1P x2 is bounded in 0 , independently of 6. Prom Corollary 3.7, w

satisfies the equation (3.31) in A O! that is,

P(x 2 ) E a i(Vw)w Xtx + p'a 2 (V) - ).'w (4.7)

if Ba C a0 r) 0" is any dis of radius 0, then from (4.7) it follows that

I I 1 21 ji I __ _ I ea CVw) + A ]2  (4.8)

ix ' X2i jw - 2  12 1

B 22 Ba a22  24i+j3 ixixj 2

The expressions Ia1i/a 2 2 1 and 10'/p1 are bounded above in 60 so the expression on the

right in (4.8) can, according to proposition 3.6, be estimated using lemas 3.1 to 3.3

together with inequalities (3.13) and (3.27). The result is

f IWx x212 4 C(R) 2
(,

2
c+ a) (4.9)

B 22
a

where a (assumed to satisfy 0 < a 41/2) is from lemma 3.2. The estimate (4.9) together

with lemma 3.3 shows that

f Vwx 2 12 4 lR'1202a

B 2

and hence by Morrey's estimate ((25], p. 158, combined with the Schwarz inequality) the

oscillation of w over a distance d in n0 satisfies (4.6). This estimate in f?

combined with the estimates for x2 < YP/2 yield the assertions of the lemma.

From lemas 3.1, 3.2 and 4.2 the following result is immediate.

Corollary 4.3. Under the conditions of the previous lemma

IWI c,1(a) 4 CR' (4.10)

and

Awl , C'R' (4.11)
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In what follows the notation (2.18) for r(w) and D(w) will be used and for the

remainder of this section an integration is over unless otherwise indicated.

Proposition 4.4. There is an R, > 0 depending on the density p in (1.29) such that for

each 8 in (0,60), k > 0, and R in (0,R 1 ) there is a X > 0 and a nonnegative

v e %(Q) ( C2 
(Q) n CI (Q) with F(w) - R

2  
and

F'(w) - W5'(W) . (4.12)

The pair (1,w) is a solution of the problem (2.12), i.e.

a- P(x2 )fi(Vw) - Xp'w in k4.13)

and

v 0 on x
2

(4.14)

P(x 2 )f 2 (Vw) - Xw on x 2 = 0 J

where P 6 (cf. (1.34)). The estimates (4.10) and (4.11) from Corollary 4.3 hold

uniformly in 6 and k.

Proof. From lemas 3.2 and 4.2 there is a positive R, such that for R f R1 , Iwi < rW .

Thus (w) a F(w) and a (Vw) - fi (w) for i - 1,2 so that (4.12) follows from

Proposition 3.6 and (4.13) from Corollary 3.7. Naturally w - 0 for x2 - -1 and all

estimates for A and w persist. In particular, from Corollary 4.3 it follows that W

has a uniquely defined Ca extension to the line x2 - 0. We assume the extension is made

and can then explicitly express the boundary condition which is implicit in the weak

equation (4.12).

Let g - g(x 1 ) be an arbitrary 2k periodic, C function and for 0 < s 1 let

H(x 2) - max{I + a x ),01- Using (4.12) to write P'(w),w AW(w),+> with

S- g(xI )H(x ) one obtains

k 01

f f p(x 2)ifI(Vw)gx H + f2l(Vw)gs
-

-k -s

k 0
X f [ f P(x 2) gHdx2  + (x1,0)q(x )dx I
-k -s
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since p(x 2  approaches I as x2  approaches 0 and p' is bounded near x2- 0'

the limit as a 0 gives

I f2 (Vw(x,0))q(xl)dx1 - ) f W(x1,0)g(x )dx
-k -k

Since g is arbitrary, the remainder of condition (4.14) follows and the proof is

complete.

The material in section 4 of (1] shows that in the case of a fixed upper surface, the

streamline displacement w can be assumed to be even in x for each n and nonincreasinq

in x as x runs from 0 to k. That is, an extremal function w for the appropriate

variational principle can be replaced by its symetrization (decreasing rearranguent)

without destroying the extremal character (cf. [1), (27]). Here again the proofs carry

over with some minor modifications which are furnished by the following result. The

functional N defined below is part of the functional * in (2.1) and enters in the proof

of lemas 4.3 of (1]. Using evenness, it will suffice to consider * ( 0.

Lemma 4.5. Let u - u(xl) be a nonnegative piecewise linear function defined on

Dk - (-k,k] x (*_,0] and suppose u has a continuous extension to R x (*.,OJ which

is 2k periodic in x. Let y(x,*) - j(*) + u(x,$) where i(W) is the inverse funtion

to (1.16) and assume y. > 0 a.e.. Define

I + y 2

N(y) - f x dxd* (4.15)

ok  Y*

so that

(N'("),u) dxd (4.16)
Ok ¥

Then if a(x,#) and j(x,#) are the symmetrizations of u(x,#) and y(x,),

respectively, it follows that

N' ( ),u - <N' (f) ,u> (4.17)
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and

N() iy) . (4.181

Proof. One property relating u and a is

k k
f u(x,*)dx - j a(x,*)dx (4.19)

-k -k

for each # ([271, Note A) so that

f g(O)u(x,*)dxd# - f g(*)fi(x,*)dxd* (4.20)
Dk  D k

for any integrable g. Hence

Dk Y -k y* t1 Dyk Y

from which (4.17) follows (in fact (4.17) is used with u(xl 11 , 1 ) E 0).

The integral defining N, when expressed in the variables x and y, is a Dirichlet

integral and so (4.18) reduces to showing

f Vi,2d C f (V,2dxdy (4.21)

S, Ss9  sy

where

S = {(x,y) I IxI < k, -1 < y < y(x,O))

and S- is defined analogously. The methods of Poly& and Szego ([273, Note A) can easily
y

be adapted to the case at hand. For periodic functions one shows that the area of the

surface y(x,4) over Dk is at least as large as the area of the surface y(x,*) over

Dk. Expressed in (x,y) coordinates this yields

f A 41 IV, 2dxdy I f A + v IV*i .
s5 Sy

Applying the last inequality to t# and ti for t > 0 gives
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(1 + 2 + t2*1V + 01t2)[ 114.22)J 2 ''' + 2 Oc )]. (22

Replacing u by y in (4.19) one sees that Sy and S have equal areas. Thus the

contribution of the "1* in each integrand of (4.22) can be omitted. If the remaining

12
inequality is divided by and t is allowed to approach zero, the inequality (4.21)

is the result.

Proposition 4.6. There is a function w satisfying the conclusions of proposition 4.4

which, in addition, satisfies w - 0 and w > 0 where -1 < x2 C 0.

Proof. As noted, the assertion that one can take w - v in proposition 2.2 and thereafter

follows from the arguments of [1], section 4 together with lea 4.5. The positivity of

w in (k follows from corollary 3.7. On rk  we have w nonincreasing for 0 4 x 4 k

and f 2(Vw) - )w. Since w x(O,k) - 0, having w(O,k) - 0 would entail f2 (Ow2) V 0

at (O,k). Since f2 - a2  for the solution w it follows from (2.22) that

w (O,k) - 0, violating the strong maximum principle.
x2

The linearization of (4.13), (4.14) about w - 0 is the problem

a P(x2 ) 2- =P'(x2 )z in

z . 0 on x2 - - (4.23)

3zon = I

3x2  . o x2

The lowest eigenvalue (denoted ) for (4.23) can easily be shown, through separation of

variables, to be positive and to correspond to a function of x2  alone, E - Ux 2 ) > 0

which solves the Sturm-Liouville problem obtained by omitting x, dependence in (4.23).

It also provides an extremal for

sup [I p' 
2 

+ 
2 (0)] , (4.24)

1 0

f P&=
0

-38-
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the analogue of (3.24). The solution C can be obtained by a shooting method or by using

(4.24).

Lma 4.7. The *lowest' eigonfunction C for (4.23) satisfies 4'(x 2) 0.

Proof. One integration of the ordinary differential equation for C - C(x 2 ) corresponding

to (4.23) gives

p(0)C'(0) - P(x2 ) W(x 2 ) ( 0

Since C'(0) - Wa(O) > 0, C(x ) > 0.

Since lea" 4.7 implies PC > 0, it is possible to use a trial function

-CI lxI -1 2
z - C0 C(x 2 )e in (3.24), as in [1), section 5, to show the following.

Proposition 4.8. There are positive constants i and k 1 (R) such that for

0 < 6 60, 0 < R < R and k > kl(R), the pair (h,w) in proposition 4.3, chosen in

conformity with proposition 4.6, satisfies

U(I - Ca4
/

3  
(4.25)

and

IlI * a C'R
4
/
3  

(4.26)

L

where C and C' depend upon p in (.291

Note that the inequality

f IV1 2 4 Cmax 2 (4.27)
as'

which is used in obtaining (4.26) from (4.25) is valid in the present context and shown

exactly as in loam& 3.6 of [11.

Remark 4.9. The results up to this point, in particular propositions 2.1, 4.3, 4.4 and

4.6, contain the assertions of theorem 1.2 (except exponential decay) for the case in which

density "transitions" take place over intervals of width 6 > 0 and In which there is a

finite period 2k in the horizontal direction. All estimates obtained are uniform in 6
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and k for each "energy' R > 0 and so the limiting case of discontinuous density

(8 - 0), including the pressure condition in definition 1.1 (1i). follows by arguments

strictly paralleling those given for theorem 8.2 of (1].

-40-
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5 . EXPONZNTIAL DECAY AND SOLITARY WAVES

The aim in this section is to show that w obtained from propositions 4.4 and 4.6 has

exponential decay on 0 C x f k, as does the gradient of w. The estimate will involve

L bounds on the gradient and we remark that in order to get satisfactory estimates for

w up to x2 - 0 we had first to pass to a limit, letting C approach zero in the

expression P'C here denoted y While there is more than one way to exhibit

exponential decay we find it convenient to reintroduce the extended domain 0, the

function C from (2.19) and the expression a from (2.21).

Lemm 5.1. Let U be the lowest eigenvalue of

Saz = Utz, -1 x C 1 (5.1)
2 x2 2

z(-I) - z(1) 0

then

C > CC 12 (5.2)

where U is the lowest eigenvalue of (4.23).

Proof. Express the odd function 0 as p + T on -1 4 x2 • 0 as in

(2.19) and let 4(x2 ) > 0 be an sigenfunction for the problem (4.23) corresponding
12

to U, normalized so that f P(x2 )(')2 . 1. Then since

p ) 1, (C. 1)2 0 1, J2x 2 1 - (0) J 2 1 '12 )1/2Ix 1/2, and

I2(x 2 ) _ &(o)1 C C1x211/2. Extend C to be even in x2 . The variational

characterization of M enables us to conclude that

-1 -1

f 1 ,2 + f T.(C 2() Cc 11/2)] - C- 1/2

-1 -1

proving (5.2)
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If X is fixed with A < p, then for all sufficiently small 6 > 0, A < p

according to (5.2). Estimates involving the eLgenfunctions wn, n - 1,2,..., and

corresponding eigenvalues Yn for

d dc ,

(5.3)

a1) C-I(-) - 0

are done exactly as in 1emma 7.1 of [i), merely by using the fact that C 49 P for

-1 e x2 4 1. The Green's function for

L A " - X.-x (5.4)
3 x i Ux i

with zero boundary conditions at x2 - *1 has the form

1/2 1 x ,- n I,-x'I

G(x - x',nWt) - 1 V (O1v(f) (5.5)
n-1 2Y

1 / 2  n n
n

with y ; C0 (U ).

Proposition 5.2. The function v from proposition 4.6 satisfies

1w(x,,1)1 49 Ce- O

(5.6)

IVvtx,)l r CO
"A

1/2
for 0 4 x 4 k, for any 1 satisfying 0 < A < y The constants C and C' depend

on p in (1.29), R, and 0.

Proof. Define V - (V11V2 ) where

V iX 2 1P1 PP2 ) P(p - a,(x 2 'Pl'P 2 )) (5.7)

for i - 1,2 and ai - )a/Spi as before. The function Vi has the same parity as ai

(cf. the proof of proposition 2.2), i.e., a, is odd in p1  and even in (x2.P 2 ).

while V2 has the opposite parity. both V, and V 2 are of order p+ near
p p 2 -0 and vanish for p 2 + 2 2;

2 .
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Suppose w from proposition 4.6 is extended to be even on 6 and then extended to be

odd about x2 - 11. Convolution of w with respect to a mollifying kernel which is

symmetric in x 1 and x2  and has support in the bell of radius c at (0.0) vill produce

a family of C
2  

functions z¢ which are even in x 2 , satisfy i. - z , and converge

to w in f(i) as C approaches zero. Since YwvI < r, it can also be assumed that

IVs 1 < r. As in lmma 7.3 of [1] it is easily seen that

R2/3

Ist(XI'X 2 x 1/3 (5.8)
xI

on 0 < x, < k where C depends on p from (1.29).

Now let w e k be the weak solution of

L' w - div V(x2,Vz ) . (5.9)

Given the parities of V1  and V2  it is easy to verify that w5 (XlX 2 ) - w¢(-x 1 9 x2 ) is

also a weak solution of (5.9) and since L is coercive, v _ 
- w

5
e i.e. w is even in

x1 . Likewise w
€  

is even in x2  and 2k periodic in x1 . For j - 0,1,2,...,2k - I

define

- f Iv b1 - f IVzbf 2  (5.10)

where aj - {(XX 2 ) e £ j 4 x 1 ( j + 1). For a positive integer n less than k let

denote the sequence {b1) and b, the sequence (b ) for n 4 j 4 2k - n - 1. Now

1/2
if B is a real number satisfying 0 < 0 < T1  , it follows as in the proof of lemma 7.4

of Ell, (one can smooth the signum function in a(x 2.Pl.p 2 ) and then Pass to a limit) that

9b 4 r (b) (5.11)

for a + 1 4 j 4 k where

TM(b)- C(b + b + b )2 * c2 k I e'SLi'iIb + q*-S( n)] (5.12)
Jo+ C 1 1 1j 1 -I 1 j+I i-n+1

and
oBn -2/3

q-C 3e + C4 n
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The solution map taking zt to w Ci o ca ot.it from 14k(i) to H k(a) and thus as

e + 0 and a converges to w in kI, w
€ 

converges to & function w
0  

in H k . The

veak form of (5.9) requires

S ax ixi ak_ 3 vx 2.V _

for all # e Hk(b), where O is still assumed to be odd in x2 . Now, letting e + 0

and using lemma 3.5 to define f 0,w* a the limit of f P*,ew, one concludes that

f [ h 1L A 0. w0 V(X W) L .(5.13)3. [P ax± + 1 2w
0* a- f ixiw

k "

But from proposition 3.6 it follows that (5.13) is satisfied if w0  is replaced by w

(extended evenly in x2 ). Letting w0 - w - z it follows that

f PlVZ12 + AP'2 - 0 • (5.14)

fk

Since the coercivity of L is uniform for all small e, it follows that z - 0. That

Cis, w and z both converge to w in Hk as C approaches 0. But then

b 4 C (b) (5.15)

where b is now associated with w0 - w.

The inequality (5.15) will imply there is an n, independent of k, such that

b • Ce "2 0J for n C j < k according to lema 7.2 of (1], provided the sequence b

meets two other conditions. The first is a symmetry condition bk+i - bki.1  (this shift

in index should appear in (l the proof is almost identical) which follows from the

evenness and periodicity of w. The second is a decay b 4 C0 -'2/3 which follows from

lems 3.6 and 7.3 of [I], trivially adapted to the present context. The exponential decay

of b j implies exponential decay of w and Vw according to lemmas 3.1, 3.2 and 4.2.

This completes the proof.
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Remark 5.3. The resolution of problem S 01.32), the solitary wave problem, is carried

out by letting the period 2k approach infinity just as in theorems 6.3 and 8.3' of III

for 8 - 0 or 8 0, respectively. The assertions of theorem 1.2 concerning exponential

decay and the cans k - .are thus covered, completing the proof of the theorem.
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Remark 5.3. The resolution of problem S (1.32), the solitary wave problem, is carried

out by lotting the period 2k approach infinity just as in theorems 8.3 and 8.3' of 11)

for 6-0 or 6 0. respectively. The assertions of theorem 1.2 concerning exponential

decay and the case k +are thus covered, completing the proof of the theorem.
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